NP-hardness of Deciding Convexity of Quartic Polynomials and Related Problems

نویسندگان

  • Amir Ali Ahmadi
  • Alexander Olshevsky
  • Pablo A. Parrilo
  • John N. Tsitsiklis
چکیده

We show that unless P=NP, there exists no polynomial time (or even pseudo-polynomial time) algorithm that can decide whether a multivariate polynomial of degree four (or higher even degree) is globally convex. This solves a problem that has been open since 1992 when N. Z. Shor asked for the complexity of deciding convexity for quartic polynomials. We also prove that deciding strict convexity, strong convexity, quasiconvexity, and pseudoconvexity of polynomials of even degree four or higher is strongly NP-hard. By contrast, we show that quasiconvexity and pseudoconvexity of odd degree polynomials can be decided in polynomial time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algebraic relaxations and hardness results in polynomial optimization and Lyapunov analysis

The contributions of the first half of this thesis are on the computational and algebraic aspects of convexity in polynomial optimization. We show that unless P=NP, there exists no polynomial time (or even pseudo-polynomial time) algorithm that can decide whether a multivariate polynomial of degree four (or higher even degree) is globally convex. This solves a problem that has been open since 1...

متن کامل

On the Computational Hardness of Testing Square-Freeness of Sparse Polynomials

We show that deciding square-freeness of a sparse univariate polynomial over ZZ and over the algebraic closure of a nite eld IFq of p elements is NP-hard. We also discuss some related open problems about sparse polynomials.

متن کامل

Real roots of univariate polynomials and straight line programs

We give a new proof of the NP-hardness of deciding the existence of real roots of an integer univariate polynomial encoded by a straight line program based on certain properties of the Tchebychev polynomials. These techniques allow us to prove some new NP-hardness results related to real root approximation for polynomials given by straight line programs.

متن کامل

On Cones of Nonnegative Quartic Forms

Historically, much of the theory and practice in nonlinear optimization has revolved around the quadratic models. Though quadratic functions are nonlinear polynomials, they are well structured and easy to deal with. Limitations of the quadratics, however, become increasingly binding as higher degree nonlinearity is imperative in modern applications of optimization. In the recent years, one obse...

متن کامل

Exact SDP relaxations for classes of nonlinear semidefinite programming problems

An exact semidefinite linear programming (SDP) relaxation of a nonlinear semidefinite programming problem is a highly desirable feature because a semidefinite linear programming problem can efficiently be solved. This paper addresses the basic issue of which nonlinear semidefinite programming problems possess exact SDP relaxations under a constraint qualification. We do this by establishing exa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Program.

دوره 137  شماره 

صفحات  -

تاریخ انتشار 2013